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PROBLEMS FOR ARBITRARY CASCADES. OF AIRFOILS
By William Mutterperl

SUMMARY

Solutions of the dlrect potentlal problem for a
cascade - namely, to find the potentlal flow past an
arbitrary cascade of alrfolls - and of the inverse prob-
lem - namely, to find an airfoll having a prescribed
veloclty distributlion 1ln cascade - are presented. The
methods used represent the extension to cascades of the
Cartesian mapping function method of conformal trans-
formation. Numerlcal examples of the direct and inverse
methods are given. The numerical labor required 1s con-
gervatlvely estimated as double that 1nvolved for 1so-
lated airfolle by the corresponding methods.

INTRODUCTION

The potential flow through a cascade of alrfolls
bears approximately the same relatlon to the real flow
through axlal and through some types of centrifugal
turbines and compressore that the potential flow about
1solated airfoll sectlons bears to the real flow about
alrplene wings. A knowledge of the potential flow
through a cascade 1s therefore recognlzed as baslcally
important for the aerodynamlc study and design of such
machlnes. The relative difficulty of making measure-
ments on airfolls in cascade further accentuates the
necessity of a potential-flow solution.

As wae the case for isolated alrfolls, there are two
potential problems for the cascade that are of prlmary
practical importance. The first, or direct problem, 1is
that of determining the potentlal flow past a given arbl-
trary cascade of airfolls. The second, or inverse prob-
lem, is that of deriving an airfoll section to have a
prescribed surface pressure dlstributlion 1n cascade.

The theoretical methods avallable for the solution
of these problems are, roughly speaking, of three kinds,
namely:
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(1) Methods that regard a blade of the cascade as
an 1solated airfoll operating in a flow composed of a
free-stream veloclty and a dlsturbance veloclty due to
all the other blades of the cascade., The method applles
best to cascades of thin airfoills with small solidity.
(See reference 1, p. 70, and bibliography contailned.
therein.)

(2) Stream-filament methods, which regard the
space between the blades of the cascade as channels of
varying area but 1n which the streamlines are uniform
or of simple curvature. These methods apply beat to
cascades of high solldity in which, moreover, the flow
is smooth (shock free) at entrance.

(3) Methods based on conformal transformation of the
cascade. These methods may be subdlvided as follows:

(a) Methods based on the concept nf the equiva-
lent cascade of flat plates; that 1s, the cascade
of flat plates with spacing equal to that of the
glven cascade, with blade angle equal to the zero-
11ft angle of the glven cascade, and irnto which the
gilven cascade can be transformed conformally.
Txtensive use of this concept is made in reference 1,
on the baslis of which are glven approximate solu-
tlons of the dlrect and inverse problems for cascades
of varlous types of shape and for varlous ranges of
solldity. The =olutlions are aprroximate malnly
because of the methods glven for the determinatlon
of the equivalent cascade from the glven cascade
or vice versa.

(b) Particular conformal transformations that
yleld speciel classes of shape for which the flow
can be calculated exactly (such as those of refer-
ence 1, p. £5, and reference 2).

(c) Exact methods for arbitrary airfolls
or pressure dlstributions in cascade, s=such as
those that exist for lsoleted alrfolls. For
this purpose, Weinig (reference 1, p. 90) uti-
lizes the baslc known transformation from a cas-
cade of flat plates to & single circle., By this
transformatlon, the glven cascade transforms to
e near circle. The near circle, p'!'-plane,is= then
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transformed to a circle, p-plane, by a modification of

the Theodorsen-Garrick procedure  (reference 3) consisting
in the use of log dp'/dp instead of 1log p'/p as

the mapping function. The transformatlion of the glven
cascade to the near clrcle appears to be much more
laborious and the near clrcle much more different from

a circle than 1s the case for the transformation of
isolated alrfoils. Thils general procedure has recently
been treated In reference 4., A similar method has also
been used in a British paper by A. R. Howell. The

basic transformation that reduces the glven cascade to

a single shape is taken as { = tanh z, where 2z 1is the
physical plane. Inasmuch ag the resulting {-plane shape
18 not of near-~circle type, several Joukowskl transforma-
tions are applied to produce a near clrcle. The transfor-
mation from near clircle to circle is then accomplished by
the Theodorsen-Garrick method. Thls method, too, 1nvolves
an excesslve amount of numerlical labor.

In the present paper, the Carteslan mapping function
method of refersnce 5 1s extended to the solutlon of the
direct end Inverse potential problems for arbitrary cas-
cades of alrfolls. After an exposition of scme haslc
propertles of the Cartesian mapping function for cascades,
procedures are glven for the solution of the direct and
inverse provblems. The procedures are then 1llustrated
by numerical examnles.

Acknowledgment 1a made to Mrs. Lols Evans Loran ={ the
computing staff of the ILanzlev iull~escale tunnel for her
assletance in maklng the calculations.

SYMBOLS
2 =x + 1y plane of cascade of airfolls
£ = £+ 1n plane of cascade of stralght lines
P plane of unit circle
Q central angle of circle

Ax component of Cartesian mapping function (CMF)
parallel to chord

Ay component of Cartesian mapping function per-
pendicular to chord

T dlsplacement constant for locating alrfoll
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<) blade angle of cascade, measured between
chord l1line and normal to cascade direction

K parameter of transformatlon from cascade of
straight llines to unit circle

Br central angle of unit circle that corresponds
to extremlity of flat plate in cascade
(equation (7))

c chord
chord
o) solldity (m)
gy s0lidity of cascade of stralght lines

C =2 \ﬁoszﬂ + sinh®K (equation (12))

S adjustment constant (equations (13) to (15))
Vg veloclty at alrfoll surface

Vp veloclty at surface of unlt circle

v relative mean velocity In physical plane

complex potentlal in clrecle p-plane
circulation

relative stream angle (See fig. 5.)

Ax tan Ay = tan A tanh ¥ (equation (27))
Mg corresponds to 1deal stream angle (equa-
1 tion (32))
tan

P tan opx = TERE R (See squation (21))

| 1ift force per unit length on airfolil in
cascade, perpendlcular to relative mean
veloclty

p density

A
c 11ft coefflclent
z (591 V§°>
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a angle of attack, measured between mean rela-
" tlve 'stream direction.and chord line |
Bp zero- 11ft angle, angle of .attack for zero
11t
o] - angle of deviatlion of relative flow from

leading- or tralling-edge direction of
airfoil (See fig. 5.)

k denominator of equation (30)

I:(sinch + sinth) \] %E - %)2 + (%%;)2]
P pressure coefficient lEL- %5)2]
Subscripts:
N " leading edge (nose)
T tralling edge
u upstrean
a downstream

APPLICATION OF CARTESIAN MAPPING FUKCTION TO CASCADES

The general scheme of application of the CMr to
cascades of alrfolls was indicated 1n reference 5.
Baslcally, the method conslsts in relating conformally
the points of an alilrfoll 1n cascade to the polnts of
its extended chord line by means of the vector differ-
ence between palrs of corresponding polnts. This
vector dilfference, called thé Carteslan mepping function
(CMF), 1s a function of posif{lion 1n any of the mapplng
planes used. It 18 reguler &nd periodic in the entire
reglon outside the alrfoll boundarles, in the corre-
sponding region outside the straight lines, and 1s
regular in the entire reglon outside the single unilt
clrcle into which the preceding reglons can be confor-
mally transformed. Instead of the simple Joukowski .
transformation from the 1solated straight line to the
cirele, however, as was used for' the 1lsolated alrfoll,
the more complicated but well-known transformation from
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e cascade of stralght lines to & clircle 1s now necessary
to express the CMF as a regular function outside the
circle. Various preparatory details of these transforma-
tions are next set down, prlor to a dlscusslon of the
general direct and Inverse problems for cascades,

CMF for cascades.- The CMF from the cascade of air-
folls to the cascade of flat plates is taken as z - {.
(See fi1g. 1.) Because 2z = { 1is regular everywhere
outside the cascade of flat plates - 1n particular, in
the Infinlte strlp outslde one plate that maps into the
entire region outside the unit circle - it 1s regular
everywhere outside the clrcle and_is therefore expres-
sible by the inverse power series

z-;=Z:—g (1)

On the correspondling boundaries of alrfoll, flat plate,
and circle

z -0=(x=& +1y
E Ax + 1Ay (2a)
and

p = el® (2b)

Substitution of equations (2a) and (2b) 1in equation (1),
with ¢, = a, + 1b,, glves for Ax and Ay the con=-

Jugate Fourler serles

nd @
Ax(®) = a5 + :E:an cos n9 + :E:bn sin np (3)
1 1

LThe mapping function chosen i3 perlodic with respect
to the same strip in the {-plane that maps into the
entire p-plane region outside the unit circle. The
necessity of introducing a cut in the infinitely many-
sheeted p-plane ls thereby ellminated.
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. . . . [
view . AF(@) = by + ibn cos nQ - Zan sin no (4)

1 1 i

The corresponding integral relations between Ax and
Ay are the same as in reference 5.

Flat-plate transformation.- The transformation
from the cascade of flat plates, {-plane, to & single
unit circle, p-plane, which makes the CMF a function of
the central angle @ of the circle, is (fig. 2 and
references 1 and 6)

K =K :
e™ -'p p - e

This transformation 1s periodic in ¢ with a cascade
spacing (perlod) of 2m. The polnts [ = to corre-
spond to p = te®. The constant displacement T 1is
inserted for future convenlence 1ln locating the cascade
of airfoils. The correspondence between points on the
flat plate and points on the clrcle 1s obtalned by
substituting ¢ = & + 1n and p = el? in equation (5).
The result 1is

cosh K + cos cp+2 sin g tan"l sin @ ~

E=T1+cos B lo
- P 1986 osh K- cos © sinh K | (6)

n=0

The angles BK' BK + w that correspond to the extreml-

ties of the flat plate are obtained by maximlzing & 1n
equation (6) with respect to ®. The resulting condl-
tion 1s

tan Py = tan B tanh K o (7)

Substitution of equation (7) in equation (6) gives the

z -
solidity o, = _maxzﬂ Smin of a caacade of straight
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lines in terms of the blade angle § and parameter K
as '

2 \/sinth + cos?p + cos B
0y = —lcos lo
L "( e Ee _ 8inh K

+ sin p tan~1 sin B (8)
\ 81nh®K + cosZp

It 1s remarked that,in the applications which are
to be given, values of & corresponding to selected
¢-values will be determined from equation (6). The
relatively more difficult lnverse calculations of ¢
for a glven &, or the stlll more difficult calcula-
tion of p for a given { by equation (5), will not
be necessary. Therein lies the essential numerical
simpliclty of the CMF method for cascades.

Airfoil posltion and adjustments in terms of CMF.~-

The coordlnates x, y of the alrfoll corresponding to
the points at the angular positions ¢ on the unit
circle are obtailned from equations (2a) and (6), as

cosh K + cos ©
cosh K - cos O

X =T + cos B logg

+ 2 sin p tan=! f%ﬁ%gf + Ax(0) (9)
¥y = ay(o) (10)

As was the case for 1soleted alrfolls, 1t will be
necessary to find for cascades the polnts on the cilrcle
corresponding to the chordwlse extremlties of the air-
foll. The abscissa x in equation (9) i1s therefore
maximized with respect to ©. The resulting conditlon
is
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C sin (o = Byg)
IR i\ Sl < (11)
_ @ sinh“K + sin Q@

where

¢ = 2\ cos®p + sinh®k (12)

and Px 1s defined by equation (7). Equation (11) is
solved (graphically) for the angles ¢y &and op corre-

sponding to the leadlng and tralling edges of the air=-
foi% (defined as the extremities of the airfoil abscils-
sas).

The solution of equation (11) will usually be
carrled out in commectlon with such an adjustment of the
airfoll that the extremitles are symmetrically located
and add up to a desired chord (solidity). The adjust-
ments are simlilar to the horlzontal and vertical
stretchings for the isolated airfoll. The horlzontal
stretching adjustment conslsts in finding the length of
stralght line, that 1s, K, by equation (8) since
1s the known angle of the airfoil chord line, which with
a given Ax(®9) willl place the airfoil extremities at

t% = tmwd, where. 0 13 the glven solldity and c¢ 1s

the alrfoll chord. The vertical stretching adjustment
consists in finding, for a gilven length and angle of
stralght line, the factor S by which to multiply a
known Ax(®) in order that the resulting airfoil will
have 1ts extremities at r§ = im0, where agaln ¢ 1is
the desired solidity. The equations for these adjust-
ments are obtalined by equating the abacissas of the
alrfoll extremlties to their desired values; that 1s,

xN=%="°

cosh K + cos mN
T + cos B 1°g° cosh K - cos'qn

1 sln @
+2 Bln B tan™ sk SAxy (13)
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xp = -3 = -0
cosh K + cos QT

= T + cos p logg cosh K - cos @p

sin Op

- -1
+-2 sin f tan Toh K

In addition, equation (1l) for the airfoil extremities
1s rewritten as

«QAx _ ¢ sin (o - BK)
do einth + sin2¢

(15)

Subtraction of equation (14) from equation (13)
yields

2mwo =

(cosh K + cos °‘\T <osh K - cos QI‘
c

cos P lofe\ooh K = cos Oy osh K + cos o

o . sin @y sin op
+- ‘H -y =
sin pltan TR tan T
+ 8(Axy - bxq) (16)

Addition of equations (13) and (14) ylelds

cosh K + cos Py cosh K + cos O
=27 = cos P 1oE@(eosh K - cos oy (cosh K - cos Op

gin @y sin mT)
+ 2 tan~1 an‘lQ—————
sin B[-an ( inh K) sinh K

+-S(Axy + Axq) (17)
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In the horizontal stretching adjustment, equations (15)
snd (16) with S = 1 =are solved simultaneously for K,
iy and -@m;-~ with-.g.. .and.. 0  glven. In the vertical

stretching adjustment, equations (15) and (16) are solved
simul taneously for 8, oy, and op, wlth K, g, "and

o glven. Finally, equation (17) i1s solved for 7.

Velocity and pressure distributions.- Once the con-
formal correspondence between & cascade of alrfolls and
the unit circle has been obtained - that 1s Ax(®),
Ay(®), K, @y, and ®p - the velocity at the alrfoil

surface is given as usual by the product of the velocity
at the corresponding point of the circle and the
stretching factor from the clircle to the alrfoll, as

vglx,y) = BT (18)

The velocity in the circle plane.is that due to &8
superposition of sources and vortices at the points

K9

p= zet™ (fig. 3), which reproduce the desired flow
conditlons at <+ 1in the physical plane and which
maintain the unit circle, and hence the cascade of air-
folls, as streamlines (reference 6). The effect of a
source at p = ek 1s t> produce a veloclty at 2 = o
from right to left of magnitude £%3 that 1s, the
complex veloclty 1s -é%ela, where m 1s the total flux
of the source. Thls fact 1s evident from the complex
potentlal for a socurce and the transformation (equa-
tion (5)) between p-plane and {-plesne. The additional
effect of en equal source at the image point p = e"K
together with an equal sink at the origln, 1s to make
the circle (hence the cascade of flat plates and alir-
folle) a streamline while maintaining the same flow
conditlon at infinity. Similarly, the effect of a
counterclockwise vortex at p = efc 1s to produce a

downward veloclty at 2z = o of magnltude -g—, that is,
the complex veloclty 1is %%eiﬁ, .where k 1s the vortex
circulation. The additional effect of an equal and

opposlte vortex at p = e K 14 to make the circle a
streamline.

If the flow conditlons at inflinity in the physlical
plane are taken as coneisting of a mean veloclty V at




12 NACA ARR No. L4K22b

angle A (fig. 1), on which is superimposed the tan-
gential velocity -t%% at 2z = J» to correspond to the

circulation about the airfoll I' (positive clockwise),

the complex potential in the circle plane is that due to
the system of sources, sinks, and vortices indicated in

figure 3; namely,

Vi = -V cos A log R e
- ek
D = @ D + oK
=1V sin A log
+ eKAp - oK

1og6 °K ) (19)
+ e P - ok

The eclrculation I' 1s fixed by the Kutta condition of
smooth flow at the tralling edge in the physical plane

or dW/dp =0 at p = eimT in equation (19). The
resulting circulation 1s

Z 2
VG1n ®m + 8inh®K
D= R eosn ko Pk - %) (20)

where

N - tan QT (21)
&n Prx 2 ooh K

It is noted here that the resultant force on an
alrfoll of the cascade 1s, by elementary cascade theory,

= pVl (22)
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where 1 acts perpendicular to the relative mean
veloclity . V...The 1lift coefficlent of the section based
on the relative meen veloclty V 1§ therefore, with :
c = 2wo,

1 I

¢y T T = =i (23)
1 Zp c wvo
Setting
Asa+ B - (24a)
and
Gpg = W = Bp + B (24pb)

and from equations (20) and (23), the 1ift coefficlent
of an arbltrary airfoil 1n cascade 1s

4 \sinfop + sinh®K
€1 = 5 sinh K cosh K sin (a + pr) (25)

The angles a and pp are, respectively, the mean

relative stream angle of attack and the zero-lift angle
measured from the airfoll chord line. Equation (25)

is seen to be simllar in form to the corresponding
equation for 1lsolated alrfolls, te which 1t reduces 1in
the 1limlt of zero solidity.

With the circulation of equetion (20), the velocity
distribution on the unit circle is obtalned by differ-
entiation of equation (19) and substitution of p = el®.
The result 1s

oy 2+
vp(®) =2\| cos?\ + sinh K[in (cp-hx) - 8in (‘pT'}“K)] (26)

8in®9 + s4nh®K




14 NACA ARR No. I4KR2b

where

tan Ag £ tan A tanh K (27)

The stretching factor: '%%l from the circle plane

to the flat-plate cascade plane 1s obtalned by differ-
entiation of equation (5). The result is equal to
vp(w) (equation (26)) with the circulation term omitted

and N = B. (The transformation (5) can, in fact, be
derived (reference 6) by a hydrodynamical argument
similar to that leading to equation (19).) Thus,

sin (¢ - Bﬁ)
% + sinh®K

%%] = 2\Jcos?p + sinh®K (28)

sin

where f; has been defined by equation (7), and
at| - +|g£

dp = ldp

- The over-all stretching factor ,%%l from the

circle plane to the physical plane 1s obtalned by dif-
ferentiation of equation (2a),

depending on the sign of ¢ - Pge

z - §{ = Ax + 1Ay

or

al- (-7 @
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The velocity distribution at the surface of an
arbitrary alrfoll in cascade 1s therefore, by equa-

Vg 2 \lcoszk + sin:th[sin (.ﬁf- A’K) - s8in (cpI. - }‘K)
T -
(sinch + sinth) % - %’5 + (9%1)2

The numerator of thls expression 1s seen to be dependent
on, but the denomlnator independent of, the stream
angle A.

The pressure coefflcient is given by Bernoulll's

equation
P—l—() ' (31)

where P 1s the ratlo of the local increment of static
pressure over the pressure at which the veloclty 1s the

mean stream value V to the dynamlc pressure EpVZ.

Integration of this pressure coefficlent around the alr-
foll section ylelds the 1ift coefficlent defined by
equation (23).

The expression for the 1deal angle of attack may
be noted. This angle l1s the mean relative stream angle
for which the leadling edge of the alrfoll, correspondlng
to ¢ = @y on the unit circle, is a stagnatlon polint.
It 1s obtalned from the condition vyL(®) = 0 in equa-

tion (26) as

+ - T
W .
i 2

(32)

(The corresponding angle of attack measured from the
"x-axis" chord line 1s given by equation (24a).)
Conversely, for any stream angle A, the front stagna-
tlion point 1s glven by .

Py, = W + 2Ag = @p (33)

(30)
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Superposition of solutions.~ Equations (3) and (4)
show That the sum of two CMF'e 1s itself a CMF. Thus,
as for 1solated airfolls, the superposition of solutions
for alrfolls in cascade ls permissible. Various types
of superposition dare possible dbecause the solidity and
stagger parameters K &and p used with a resultant
CHMF need not be the same as either of these parameters
used with the component CMF's, The use of superpositlon
i1s implicit in the horizontal and vertlical adjJustment
derived previously for an airfoll in cascade.

Equivalent flat-plate cascade.~ The many useful
results of reference 1, which are derived and presented

on the conceptual basis of the equivalent cascade of
flat plates, make it worth while to note some of the
properties of the equlvalent cascade. In general, the
conformal transformation of a cascade of alrfolls into

a unit clrcle determines at the same time every possible
cascade of flat plates Into which the glven cascade can
be conformally transformed, wlth the spaces at 1= cor-

responding and equal. All such cascades of flat plates
transform to the unit circle with the same locations for

the points p = ek corresponding to the polnts 1o

in the cascade plenes. The parameter K of the flat-
plate transformation (equation (5)) 1s therefore fixed.
Of the infinlty of flat-plate cascades corresponding

to the remalning parameter, namely, the stagger angle 3,
that one of which the stagger angle equals the zZero-1ift
stream angle of the given cascade 1s by definltion the
equivalent cescade of flat plates., Thls stagger angle
1s Qg by equation (20). Egquation (21) then shows

that the angle @q corresponding to the tralling edge

of the alrfoll in cascade corresponds also to the
tralllng edge of the squivalent flat plate.

The s80lildity of the equivalent flat-plate cascade,
as given by equation (8), is evidently somewhat larger
than that of the glven cascade. For a given stream
angle A, equatlion (20) shows that the circulation T
and thus, by equation (23), the product oc; are the

same for the two cascades.

The veloclity dlstribution 1in the alrfoll cascade
at one stream angle mey be converted to a velocity
distrivution at any other stream angle by & knowledge
of the equlvalent cascade, because the ratio of the
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velocitles at two different stream angles 1s the ratilo
of. the corresponding numerators in equation (30).
Inasmuch as the constants of -the -numerator in equa- ..
tion (30) are the same for the given cascade and the
equivalent cascade, the desired veloclty ratlo equals
that for the equivalent cascade. Thls result 1s
analogous to that for isolated alrfolls and thelr
equivalent flat plates, It 1ls useful when the equiva-
lent cascade can be easily determlned to a satlsfactory
approximation (e¢f. reference 1l). If the correspondence
between an alrfoll in cascade and 1ts equlvalent flat
plate 1In cascade 1s known wlth sufficlent accuracy,
however, the CMF of the transformation Ax(9) + 1Ay(o)
can be set up and the velocity dlstribution obtalned
directly by equation (30).

SOLUTION OF DIRECT POTENTIAL FROBLEN FOR CASCADES

The direct potential problem for cascades of air-
folls 1is that of determining the general potentlal  flow
past, and In particular the veloclity at the surface of,
a known arbltrary alrfoll In a cascade of glven
solidity o and stagger anzle f (fig. 1). The solu-
tion 1s analogous to that in reference 5 for 1solated
airfoils, The method is one of successlve approxlima-
tlon, whereby an alrfoll of which the CMF transformation
to its "chord-line" cascade and hence to the unit circle
1= known 1s compared with the glven alrfoll to obtain
an Ilncrerental CIF. The incremental CVF plus the known
CNF ylelds an airfoll that may agaln be compared with
the glven airfoll, and so on.

The steps In the process are as follows:

Step 1: An alrfoll in a cascade of stagger f and
golidity O 18 glven and an Initial airfoll is assumed,
for which are kmown the CMF Ax, (o), Ay, (), the

angles ¢Nb’ ¢T° corresponding to the geading and

tralling edges, the cascade parameter KO, and the
translation constant To ~ all adjusted for a cascade of
the glven stagger and solidity. The chordwise locations
X, Ffor this alrfoll corresponding to a set of evenly

spraced values of @ on the unit circle are calculated
by equation (9).
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Step 2¢ At ths chordwlse locations x,, the dif-
ferences 6y, = Ayl - Ay, Dbetween the ordirates of the

glven airfoll and those of the assumed alrfoll are
obtalned, graphically or otherwlse., It 1s Important that
the given airfoll be located relative to the coordinate
axes ag shown 1n figure 1 and that, when the alrfoll
ordinates Ay, are obtalned, the alrfoll boundary bse

traversed (counterclockwise) in the sare sense as is the
extended chord line. : :

Step 3: The corresponding conjugaete chordwlse-
displacement Iincrements &xy are now calculated In

accordance with equations (3) and (4). The slopes
d6xy/dp and d46y;/de are also computed by mesns of
the corresponding derlvative Fourler series. Detalls
of thls calculation are glven in appendix A of refer-
ence 5.

Step 4: The firet-approximation CMF, namely,
Axy = Ax, + O6x; and Ay = Ay, + 8y;, and the corre-
eponding slopes dAx,/de, @Ay,/d® are now known. In
conjunction with the constants K, mNO, mTO, and T,
of the initial alrfoll, this CF would, 1ln genersal,
determine an airfoll (equations (9) and (10)) »f which
the extremities (equations (11), (13), arnd (14)) would
not add up to the deslired chord (¢ = 2n0), although the
stagger angle 8 (of the x-axis chord) 1s correct.
The constants K,, ONgs PTo» and T, are therefore

corrected by a horizontal stretching adjustment (equa-
tions (15), (16), and (17)) such that the resulting
constante K,, ¢N1, ®Pp,, and Ty yleld an alrfoll of

the desired chord.

Step 5: The new chordwlse locations x, are cal-

culated by equation (9) with the constants derived in
step 4. The resulting airfoll, of coordinates x,;, A7y,
1s compered with the glven alrfoll. Tf the agreement

1s not satlsfactorlly close, steps 2 to 5 are repeated,
all subscripts belng advanced by one.

Qtep 6: If the agreement 1s close enough, the exact
velocity distribution of the airfoll just derived (which
1s thus a close enough epproximation tc the velocity dis-
tribvution »f the given alrfoll) is calculated as indicated
in the section “Velocity and Pressure Distributions.”



NACA ARR No. I4K22b 19

e

SOLUTION OF INVERSE POTENTIAL PROBLEM FOR CASCADES

s L me oy = s

As compared with the lsolated airfoll, there are
several possible varlations of the inverse problem for
cascades, depending on the over-all cascade data glven
in acddition to the prescrlibed velocity distribution.
These cascade data Include the ultimate upstream and
downstream flow angles considered as one gquantity, the
g0lidity 0, and the stagger angle f. Of these three
quantities, 1t appears that two may be speclfied
independently along with the prescribed velocity dis-
tributlon.

The inverse problem for cascades can be csolved by
the method of comparlison of surfece potentlals given 1n
reference 5 for the case of the 1solated ailrfoll. A
numerlcal example, howevar, dlsclosed several dlfflcul-
ties of application. The over=-all adjustment for one-
to~one correspondence of the true and approximate
potential curves was unduly labhorious. Furthermore,
the first exact veloclty éistribution obtalined oscll-
lated about the prescribed dlstribution through wide
limits. This os=clllation eppeared to be caused by the
somewhat indirect method of determining 6x(0),
resulting in inexact and nsclllatory value= for the
derivatives dAx/dop, dAy/de.

The more stralrhtforward method ol derivatlives,
namely, determining dAx/de, dAy/do directly from the
prescribed veloclty distribution, was therefore resorted
to. As remarked in reference 5, the method can be
regarded as based on the use of the function ipgiﬂag—il.
This function 1s single-valued and regular everywhere
outalde the unlt clrcle; 1t approaches the limlt zero
as p—>o and on the unit circle itself p = el®
reduces to %%5 + id% . If, therefore, these deriva-
tives can be g0 determined as to satlsfy the expres-
glon for the prescribed velocity distribution (equa-
tion (30)), the alrfoil 1tself can then be obtalned
by a simple Integration.

The determination of the derivatlves can be made
by succeszive approximation. The constants A, ¥ are
fixed to =satisfy approximately the over-all cascade
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data previously mentioned. Inasmuch as the derlivatives
dAx/dp, dAy/de are of the same order of magnitude for
the shaper to be dealt wilth, 1t 1s apparent from the
structure of the radical In equation (30) that dax/do
will exert a greater Influence on the veloclties over
most of the airfoll than will dAy/de. To a given
approximation, dAx/de can therefore be solved for in
terms of the prescribed veloclty v, and the data

dAy/de, A, and K of the previous approximation. A
new dAy/deQ can then be calculated as the function
conjugate to this dAx/dg; and A, K can be corrected
to serve as the basls for the next approximation.

The steps of the inverse process are outllned as
followsa:

Step 1l: A veloclty distribution expressed as a
function of percentage chord or arc and the approoriate
cascade data are glven. The deflnltlon of the chord and
the prescribed velocity dlstribution are taken as in
reference 5. An initlal elrfoll is assumed, which is
Judged to produce approximately the desired condltions
and for which the cascade CMF Ax,, Ay, 18 known,

Step 23 If the glven cascade data are the solldity o
eand stagger angle B, a horizontal adjustment 1s applisd
to the CMF Ax,, Ayy to achleve these values; that 1s,

equations (15) and (1€) with S =1 are solved for K,
Ty and QTO wlth the given values of ¢, 3. Thence,

equation (17) 1s solved for Ts.

Step 3: Tre 11ft coefflclent c¢3, corresponding

to the prescribed veloclty dlstributlion is obtalned
approximately as the area under the cuvrve of chordwise
pressure dlstrlibution. A correctlon to thls e, 1if

necerssary, 1s obtalned by integrating the chordwlse
perpendlicular pressure components ofzthe prescribed
distribution on the initial airfoll. The requlred

2Equations (22) and (23) are dynamical equations, holding
only for simply connected alrfolls to which Bernoulll's
equatlion applies. 1In order to preserve the consistency
of the CMF equations for flgure-elght contours, the
circulation T can be approximated and equation (20)
can be used directly.
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stream angle Ao for this 14 end ¢ 1is calculated
" from equations(23) and- (20) by use -of - @p  and . K, of

step 2. If the ultimate upstream and downstream flow
angles are speclfled instead of the sollidlty, an extra
relatlion between I' and A 1s known. If thils relation
and equation (23) are substituted in equation (20), an
equation relating ®p, K, and © results. This equa-

tion 18 solved simultaneously with equations (15) and (16)
for PNy PT,> Ko, and O0g5e These values then deter=-
mine Ty, A,, &and O, . A similar situation exists if

the upstream and downstream angles and the solldity o,
instead of the stagger angle B, are specifled.

Step 4: Vilth the conatants derived, the chordwise
locations x, are calculated by equation (9) for a set

of evenly spaced ¢@-values.

Step 5: The first approximate derivative dAx;/do

i1s calculated by solution of equation (30) with the
constants already derived, the prescribed veloclty vz/V

corresponding to the chordwise locatlons x,, and the
initial dAy./do.
Thus,
2 2
dAx = _‘15. + ZE - .d_A.Z (34)
do dp Vz 49

Two posslble sets of wvalues for dAxl/dw result from

this calculatlon, depending on the sign of the square
root in equation (34). It appears that for about one
half the o¢-values, one set of dAx3/d® roots should be

taken and for the other half, the other set. The
resulting dAxy/de should be of the right order of
magnitude to lead to a real airfoll. Any imaglnary
roots that occur are replaced by the most favorable
real values. (The assumption is that a real solution
exists and that any imaginary values of dAx/de® in
equation (34) are the result of too poor an initial
cholce of dAy/ay.)
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S3tep 6: The derlvatlve dAyl/d¢ conjugate to the
dAxl/dw of step 5 13 calculated in accordance with the

derivatives of equations (3) and (4). The functions
bx7(9), Ayj(@) are ther. obtained by integration. If

the dlfference

déx; dAx;  dAx,

do do do

1s small, it may be more convenient, because of smaller
required accuracy, to compute the increments dbyl/dm,

6xy, and 06y; and add them to the corresponding values
of the previous approxlimation.

Step 7: The horlzontal adjustment of step 2 and
the calculation of the stream angle Kl, step 3, 1s made

by using the first;approximation CMF derlved in step 6,

Step 8: The chordwise locations xy are calcu-

lated as in step 4 by using the constants derived in
step 7.

Step 9: The first approximate airfoll and 1ts
exact veloclty distributlion are calculated by equa-
tions (9), (10), and (30). If the velocity distributilon
1s not satisfactorlly close to that prescribed, the
procedure 1ls continued with step &, all subscripts belng
advanced by onse.

ILLUSTRATIVE EXAMPIDS

Direct method.- As an 1llustratlion of the direct
method, & cascade of solidlty o0 =1 s&and blade
angle f = 45° was assumed, together with the glven
airfoll section shown in figure 4, of which the ordinates
are given 1n table I. In the resulting cascade arrange-
ment (fig. 1) the flow is from right to left (compres-
sion action).

As a preliminary step, the direct CMF method
(reference 5) was applied to the given sectlon considered
acting as an 1lsolated alrfoll. The resulting CMF and
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transformation constants are glven in tables IT and ITI,
respectively., It is remarked that the relatively poor
Initlal ‘eprroximstion chosen; namely, "a Joukowskl airfoll
of 6~percent camber and 1l2-percent thilckness, necessi-
tated three approximations before coincldenice with the

" glven airfoil (to a scale of chord length equal to 20 in.)
waa attalned. ) . .

For the airfoll in cascade, the procedure outlined
in the section "Solution of Direct Potential Problem
for Cescades" was followed. In esccordance with step 1
of the procedure, the inltlal approximation was takeno
as the cascade of chord lines of unlt solidity and 45
blade ensgle. The 1nltlal CMF waa thus Axg = Ay, = O,

The parameter K,, as determined from equation (8)
with o, =1 and 3 = 450, was 0.,52C. The chordwlse

locations x,; were calculated from equation (9), with
T = Ax = 0.,

Steps 2 to 5 were then carried ovt. The resulting
first approximate "airfoil" is skown in figure 4. The
abscissas are the chordwise locations xl(c) of the

flrst spoproxzimation and the ordinater are those of the
‘riven airfoll at the chordwlse leocations =xo(®) of the

initial approximetion, whtich are lndicated In figure 4.
The first epproximatlion 1s seen to have accomplisked
moat of the required chanre from the chord line to the
given airfoll. Tre resulting shepe is not a plhyslecally
real airfoll, however, because of the loop toward the
tralling edge.

A second approximation gave results <shown in fig-
ure 4. The agreement over most of the airfoll 1r good,
although appreciable departures over the front upper
surface and a sllght loop near the tralling edge stlll
remained. A third epproximation removed practically all
the remaining diescrepancies. The polnts that were =still
perceptlbly different are indlcated in flpure 4. A
fourth approximation gave coinclidence with the glven alr-
foll to a scale of 20 inches for the length of clkord.

The colincldence of the fourth approximate airfoll
with the glven airfoll was obtalred for 24 polnts
(besides the leading and tralling edges). These points
correspond to 24 evenly spaced values of ¢ on the unit
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circle. It 1s seen from flgure 4 that the airfoil
points are sparsely dlstributed on the front upper sur-
face and rear lower surface, as compared with the rest
of the airfoil. This distribution 18 due to the
influence of the flat-plate transformation (equation (6))
in affecting the airfoll absclssas (equation (9)).

Since the CMF was obtained 1n the form of Z4-term Fourler
expansions, 1t was thought that airfoll points obtained
by interpolation from the derived CMF might show some
waviness relative to the given alrfoil in these regions.
Five such interpolated points are gilven 1n table II and
are shown in flgure 4. The waviness appears to be
negligible 1n thils case. It 18 noted that any deslred
spacing of polnts on the airfoll could be obtalned by
working with approprlate unevenly svaced o-polnts on
the unit circle; however, the determination of Ax(o)
from Ay(o) becomes more laboricus.

The slight waviness in the Fourler expansions for
Ax(®) and Ay(®) gives rise to greater oscillations
in the corresponding derivative expansions for dAx/de
and dAy/d@. In thls example, the slopes were computed
by harmonic synthesis of thelr Fourler expansions, and
the results were smoothed out graphlically to correspond
to a falred curve through the 24 known values of Ax
or Ay« The 1imits of oscillation of the derivative
curves were small enougrh that no appreci%ble error was
belleved to be lncurred in thls process.

3in extreme cases, where the higher harmonics in the
Ax(p), Ay(®) curves are large, the osclllations of
dax/do, day/dv may lead to appreciable inaccuracy of
the veloclty distribution. It 1s possible, however,
to solve initially for the derivatives dAx/de, dAy/de
instead of Ax(®), Ay(®) by working from the slopes
dy/dx of the given airfoil, for

ay . __ &y

dx ~ d(& + Ax)

_ _dAy/do

df | dAx
ao do
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The resulting CMF's and the transformation constants
for the alrfoill in cascade are given in tables II and IIT
respectively. - The -‘column of values of. -k under. "Cascads'
in table II glves the values of the denominator in equa-
tion (30) for the velocity distribution. This factor
does not change with angle of incidence of the flow.

The variation of 1ift coefficient with angle of
attack for the cascade arrangement (equation (25)) was
obtalned as

c; = 4.65 sin (a.+ 1094!')

where, 1t will be recalled, c¢; 1is based on the mean

velocity V and ga 1s the angle between the mean
velocity V and the chosen chord line. The lift-
coefficlent varistion for the isolated alrfoll was
obtained as

cy = 6.86 sin (a + 11922')

.wlth the result that

%- 9%

Thus, to a glven approximation, dAy/de can be deter-
mined from the known deta of the previous approximation.
To the glven approximation, dAx/dp 1s then the func-
tion conjugate to dAy/dp. The derivative dAy,'d® can
then be determlned to a better approximation, ete. 1In
each epproximation, an exact alrfoll 1s determined by
integration of dAx/do, dAy/do (the integrated Fourier
serles are smoother than the originsal series). This
method for the solution of the direct problem is the
counterpart of the method of derivatives in the inverse
problem. The accuracy of the derivatlives dAx/dm, dAy/dw
thus determined depends primarily on the accuracy to
which the airfoll slopes dy/dx are known. Corre-
sponding remarks apply to the 1lsolaeted-alrfoll case, in
which, however, the higher harmonics are usually of

less magnitude.
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The ratio of 1lift-curve slopes is thus 252 = 0.678 eand
tge zero-1ift angle for the cascade has been reduced by
1°18!'.

The equivalent cascade of flat plates has a stagger
angle of 45° -~ 10°4' = 34°56!' and the solidity, as
determined by equation (8) with p = 34°56' and
K =0.268, 1s o0p = 1.19. It may be noted that the

ratlo of lift-curve slope of the equlvalent cascade to
the lsolated-plate value 27 1s 0:624, which 1is about
8 percent less than the value for the glven cascads.
The corresponding ratlio for the chord-line cascade
(B = 45°, 0 = 1) 1s 0.844, or about 25 percent higher
than that for the given cascade., If the equivalent
cascade were based on the isolated-airfoil data, namely,
= 1.0912 and @ = 45° - 11%2' = 33°38", the ratio
o lift-curve slopes of the equivalent cascade 1s 0.685,
which 1s a satlisfactory approximation to the true value
in thils case.

The variatlion wlth 1lift coefficlent of the various
flow angles of the cascade &s well as the over-all
pregsure-rise coefflclent based on mean dynamlic pressure
1s given 1in table IV. The values were calculated by
means of the veloclty trilangle of the cascade (fig. 5).
The deviations &y, O6p of the upstream and downstream

flow angles from the mean directions of the leadlng and
tralling edges of the alrfoll (fig. 5) are also given.
The downstream flow angle Az 1s seen tao remaln essen-

tlally constant as the upstream flow angle 1s varied.
In thls respect, therefore, the cascade acts llke one
of infinite solidity. The deviation ©6p of the down-

stream flow from the direction of the tralling edge 1is
largs, however (about 18°).

The veloclty distributions of both the 1lsolated
airfoll and the airfoll 1n cascade  are shown for zero
1lift coefficient in figure 6 and for various other 1lift
coefficlents 1n flgures 7 and 8. The velocity distri-
butlions at zero 1lift may be compared directly. IExcept
near the leading and trailing edges, the veloclties for
alrfolls in cascade are higher than the velocltles for
the isolated alrfoil. This result may be ascribed to
. the constricting effect of two neighboring blades of
the cascade on the streamlines between them. The
velocity bump about 60-percent chord back on the upper
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surface of the alirfoll 1n cascade 1s probably caused by
the suddepn rate of change of flow area 1in this region
due to the presence of “the upper neighboring. blade
(fig. 5). At the leading edge, the velocity peak is
lower for the alrfoll in cascade than for the l1solated
airfoll, probably because of the effect of the lower
adjacent airfoll in deflecting the upstream flow upward
toward the nose. At the tralling edge, the veloclty 1s
lower for the alrfoll in cascade then for the lsolated
alrfoll, probably because the upper adjacent alrfoil
provides a divergent channel for the streamlines in
thils region.

The proper basis for comparison of velocity dlstri-
butions of the isclated and cascade alrfolls at 1lift
coefficlents other than zero 1s not clear. Because
the cascade velocltles (fig. 8) have been expressed as
fractions of the mean veloclity, the velocltles toward
the leading edge are higher than 1f the ultimate up-
stream velocity had been used as a base; whereas, toward '
the tralllng edge, the velocltlies are lower than 1if the
ultimate downstream velocltles had been used as a basge.
The ultimate upstream and downstream velocltlses for the
varlous 1ift coefflclents are indlcated by the hori-
zontal lines in figure 8. 1In general, 1t appears that
the adverse veloclty gredlents near the leading edge are
less for the airfoll 1n cascade than for the 1lsolated
alrfoll, whereas the adverse veloclty gradlents near
the upper-surface tralling edge are greater in the
cascade case.

The "ideal® veloclty distributions, which produce
e stagnatlion polnt at the chordwlse extremity of the
airfoll, are those for c¢ijy.451gateq = 1°28 and

Clocagcade - 1.17. It is seen that small veloclity peaks

are present on the lower-surface leading edge under
these condltlions. These peaks are removed 1ln the
lsolated-alrfoil case at c¢; = 1.50 and for the cascade

at about ¢ = 1.30 without producing peaks on the

upper surface. The incidence of the upstream flow rela-
tlve to the chord l1line 1is 15°24! in the case of
07‘—130

The four epproximations 1n thls example were carried
out without any attempt at plckling off the ordinates in
order to anticipate the resulting change in chordwise
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location. It may be expected that, when more favorable
initilal approximetlons than the chord line are avail-
able, and wlth some experience in anticipating changes
in chordwlse locatlons, no more than two approximatlons
will be necessary for accurate results - that 1is,
results less than 1 percent 1ln error.

Finally, 1t may be noted thet the CMF derived for
the given alrfoll can be used as a goo€ 1nlitial epproxl-
mation not only for eimilar eirfeolls in compressor
actlion but also for alrfoils In turhine action. For
this latter aspplicatlion, the alrfoll would be drawn
with the camber on the same sgide of the chord llne as
in flgure 1. The flow 1s then from left to right; that
fe, A 1s increased by 180°. This procedure appears
more favoreble nurmerically than drawing the airfoil with
the camber on the other eide of the chord line, which
would maintalin the flow from right to left.

Inverse method.- In order to 1liustrate the inverse
method for cascades, the veloclty distribution at
¢y = 1.3 of the alrfoll Just analyzed was modified as

indicated in figure 9. The corresponding prescribed
pressure distribution 1s constant up to 50 percent
chord and thereafter increases llnearly to the tralling
edge. The prescribed cascade data were taken as

o=1, p = 45", The ultimate upstream and downstreanm
angles, or blade circulatlon, were sxpected to be about
the same as those for the initial airfoll in caszcede at
¢y = 1.3,

The procedure already outlined was followesd. The
initial airfoll was chosen as the one just aralyzed by
the direct method (fig. 10). The CMF ard assoclated
conetants of the initiul alrfoll are given in tables II
and TIT. The inltial CMF war actually taken as 1.145
tires the values of table II, because the use of the
method of potentiales had lndlcated this factor as a
preliminary over-all adjustment. The chordwlse loca-.
tiona of table II were consequently corrected. The
initial 1ift coefficlent was taken as the area enclosed

2
by the prescribed (%) -curve, namely, c¢3 = 1l.26.

The first-approximation dAx)/de was thereupon
calculated from equation (34) and plotted in figure 11.
Except at © = 15 , thls curve represents the solutlon
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of equation (34) with the negative square root for

_ 5Q9'§_Q_§_lqp? ~and the solutlon wilth the poslitive root
for the remaining ¢-vaiués. ~“At @ = 15% - the calou-..
lated roots were complex. The '2;1
faired through © = 15° to complete the specification
of dAx;/de. The increment

dfx; _ dAxz;  dAx,
do ~ de ~ do

was then used to calculate the first-approximation con-
Jugate increment

-curve was therefore

ddyy - dAyq dAy,
dae -~ "dg¢  do

and the incremental airfoil CMF 8xy + 16y;. The

Runge 24-point schedule (see appendix A of reference 5)
was used for these calculations. The horlzontal adjust-
ment then applled to thils CMF was such as to maintain
=1, B8 = 45°2 (with respsct to the chord chosen for
the initial airfoil, the so-called x-axle chord). The
first espproxlimate CH¥I" 13 listed In table V and the
agssoclated constants in table VI. The flrst approxi-
mate alrfoll 1s shown in flgure 10 ané 1ts exact
veloclty dirtribution, for c¢; = 1l.26, in flgure 9.

The cascade flow angles for the derived sectlons are
given Iin table VII.

The changer in veloclty distributlon and alrfoll
contour and poslition from thelr inltlal values are seen
to be considerable. The mean line of the derived sec-
tlon 1s reflexed toward the tralling edge, probably
because of the influence on the "mean" streamline of the
vortlicity toward- the leading edge on the upper neigh-
boring alrfoll (fig. 5). The maximum thickness of the
derived section has been increaszed from 10 percent to
about 12 percent. Furthegmnre, the sectlon as a whole

has been rotated about 25 , with the result that the
cascade blade angle, although equal to 45° as meas-
ured from the initial or x-axls chord line, 1s about

42.5° as measured from the "longest-line" chord in the
derived airfoll. A slight change 1n carcade solidity
i1s simllarly brought about.
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A second approximation to the prescribed veloclty
distributlion was next carriled out with the lnltlally
chosen chord maintalined as the chord“ of the derlved
airfolls. It was evlident that the poor first approxi-
matlon on the upper-surface leading edge, partlicularly
for o = 15° was due originally to falring the

dox
—aal-curve through this point too smoothly. The

resulting valiue of dAxl/dm was not the best possible

real value, whilch ls In thlis case the one that mskes
the velocity on the airfoll at thils point as high as
possible or, from equation (30),

( )cp—15° [P ©=15°

dAx
This value was therefore given to 2 for the

second approximation with the remaining values calcu-

lated as 1n the first epproximatlion. The incremental
dﬁxz dAxg dAxl

derivative 3% - de - 3o thus obtalned 1s skhown

in figure 11. The conjugate function db&yp/de calcu-

lated thersfrom 1s shown 1ln filgure 11. The osclllatory
nature of dﬁyz/dw 1s caused by the large magnltude of

the higher harmonics in the Fourler series for doxy/do.
The 5y2-function, as obtailned by synthesls of the
Integrated Fourler serles for dﬁyé/dm, displaeyed very

1li1ttle osclllation. The slopes of the smoothly drawn
5y2-curve were therefore measured gggghically at all

but the ¢ = 0°, 15° points. The dwz
obtalned 1s seen from figfFure 11 to be a rean curve
through the calculated dgz

used in the calculetlion of the second-approximation
veloclty distribution. TUse of the measured values of
dbyz/dw as compared with the calculated values removed

an oscillatlion of, at most, ¥2 percent 1n the velocity
dlstrivbution. Any error in measuremsent of the

-curve thus

2
-values, Thls curve was
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dbyg

,_-?Fi--slopes would therefore produce the quilte negligible

error of a small fraction of 12 ‘percent.

The second approximatlion was carried out for
¢; = 1.26. The resulting CMF and assoclated constants

are glven 1in tables V and VI. The second-approximation
airfoll and 1ts exact veloclty distribution are shown
in figures 10 and 9, respectively. The veloclty distri-
butlon is seen to be convergling satlsfactorily to the
rrescribed values, though perhaps not so rapldly as
would be the case for an lsolated alrfoll. The tendency

toward formatlon of a velocity bump about 60 percent chord

back on the upper surface is seen. As previously men-
tiloned for the direct method, this effect may be due to
the sudden constriction of the stream caused by the
forward part of the upper nelghboring airfoll (fig. 5).
The second approximate alrfoll differs from the first
approximate alrfoll mainly 1in having greater thickness
toward the nose and less over=all camber. The greater
thickness toward the nose 1s evidently the consequence
of a higher required velocity on the upper surface at
the leading edge. The reduced over-~all camber appears
to be caused by the necesslty of a more constricted
atream over the rear upper surface (higher requlred
veloclties). The forward half of the upper neighboring -
profile (fig. 5) skifts downward to accomplish this
constriction.

A sharp cusp, possibly even & slight, physlcally
impossible loop, 18 evident at the tralling edgs.
Apperently, the prescribed velocity in this reglon 1s
close to being unattalnable wlith a physically real
alrfoll. The necessity of as sherp a cusp as posslble
at the tralling edge seems definite.

From the practical point of view, two approxima-
tlons are considered sufflclent in this case. The
necessary modifications of the 1lnlitlal alrfoll to
produce the modified velocity dlstribution are clearly
indicated. The results of this end the preceding
example can now be used as good inltial approximatlions
in further modiflcations elther of airfoll shape or of
veloclty distribution, or, to a lesser extent, of
cascade geometry.
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CONCLUSIONS

1. The direct and inverse Carteslan mapping
function (CMF) methods already used for isolated alr-
folls can be applied dlrectly and analogously to the
cascade case.

2. The cascade problem represents a more severe
test of the CMF metlod than does the 1solated-airfoll
problem. Although the convergence of the successlve
approximations 1s slower in the case of cascades than
In the corresponding isolated-airfoll cases, the
numerlical work for a _given accuracy 1s considerably
less than hitherto required, at least fcr cascade
sollditles near unity.

Langley Memorlal Aeronautical Laboratory
Natlional Advisory Commlttee for Aerorautics.
Langley Fleld, Va,
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TABLE I.- AIRFOIL ORDINATES, DIRECT PROCESS
[?tations”andnordinatqp_1nvpgppegt of alrfoll chord]

o4

Upper surface Lower surface
Station Ordinate Station ‘Ordinate

0 0 0 0
025 -97 .77 -.43
.44 l.24 1,06 -.44
l88 1.66 1.62 -.46
2.03 2.63 2.97 -3
4.45 4,17 5,57 -.13
6.87 5.44 8.13 .18
9.34 6.56 10.66 «48
14.34 B8.46 15.66 1.08
19.38 9.98 20,62 1l.64
24 .44 11.24 25.56 2.16
29,65 12.20 30.45 2.60
34 .64 12.90 35 .56 2.96
39.72 13.39 40,28 3.29
44 .82 13.64 45,18 3.58
49.96 13.65 50.04 3.91
55.07 13.37 54.93 4.23
60.17 12.78 59.83 4.48
€5.26 11.92 64.74 4.68
70.30 10,81 69.70 4.77
75.32 9.53 74 .68 4,67
80.29 8.04 79.71 4.59
85.23 6.40 84,77 3.94
90.17 4.56 89.83 3.10
95.10 2.57 94,90 1.89

100 0 100 0]

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS



TABLE II.- CMF's FOR ISOLATED AIRFOIL AND FOR AIRFOILS IN CASCADE  NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS
Isolated Cascade
? :
e dAx da A dax da x
(redians) Ax Ay r.CN 'a-a’x b 4 k Ax —"z I %; 5 k
0 x f% -0.125 }0.027 {-0.137 {0.165 [0.,987 [|0.197 ]-0.729 |=0.155[=0,315 |[1.695 |0.7556 (0.366
1 -.152 076 | -,0655| .208 «923 372 -,610 | ~,029} 1.028 [1.024 .982 181
2 «+156 +133 0130 | 220 «810 «528 | =-.346 .008 .800 .0408] .989 .158
] «.139 .188 .0985| .205 +653 .645 | -.190 «005 .466 {-.0627 .927 «510
4 -.106 +235 «175 .160 | .462 .721 | -.0856} =.,003 320 |=-.110 .848 | .825
5 =.0515| .266 .228 0770 .252 760 | «.0123] =.013 230 [=.14 762 [1.095
6 +0105 ¢ .273 244 [-.0250] .0314] .778 .0407 | -.026 170 |=-.14 +667 [1.289
7 0744 | .268| .228 |-.124 |-.187 .766 0776 -.036| .l22 |-.14 «560 [1.392
8 0122 o215 .150 --195 -.403 0750 0113 -0049 .084 -.14 0436 1.586
9 +146 +160 «0553 {~.214 |-.604 .685 122 | -.060 .0591(~-.16 273 }1.264
10 +148 «101} =.0401{~-.200 |=.776 .56%7 «146 -.074 .0281|=-.28 .0530]1.045
11 «127 «061| =,116 |-.162 |=,906 394 0739} =.0956] =.557 +0480 |~.325 .810
12 [} 0887 . 014 e 180 b } 10', - 0982 . 192 -e 0042 - 047 . 295 . 896 e 864 0354
13 . »0350{ .001} -.215 .0245}-,998 +0654 227 | -,012f 1,087 |-.304 |~.982 174
14 -,0121{ .026] -.122 149 |=,936 412 .382 | -.071 .10 [-.745 }-.853 | 503
15 -,0235| .067 .0278] .146 [=,774 .745 o371 | =o113) =04 [=.46 [-.744 | 795
16 -,00421 ,092 .105 0497 -.529 . 963 «388 -.149! =.12 .38 ~-.638 11.023
17 0223 .092 ,0693|~.0595]|=,239 11.031 303 | #4176 =418 |=¢30 |-.544 ]1.175
18 .0319 0074 0005 "00682 .0528 1.005 0257 -.202 -.235 -.28 -.448 10247
19 00317 .05'7 "0003 -00646 0535 0964 01'7‘7 -.225 -028 -.2.7 -.554 1.256
20 «0277) .032] -.0458|=-.101 «594 .829 +0B66 | =e247] =,395 |=-.24 =247 11.144
21 «0063| ,009| -.105 |-.0850| .799 «616 -,0484 | =.264| -.569 j-.14 -.124 |°'.974
22 =.0294|-,007} -.168 {-.0350[ .937 . 347 =-,216 | =.873]| -.794 <03 .0499| .798
23 -,0788|-,006[ =-.206 0721} .9968 0966 -,490 { -,288]-1.218 | .631 .316 }. 577
Interpolated
0.5 «.720 | =.085 .65 1.55 914 | .265
005 0150 -0087 -.24 -.27 "0107 .953
1.5 .010 -0082 -.36 -62 -.598 ‘ 0590
2'5 "o3_40 -.270 -1001 015 0166 0684
5.5 -0635 -0219 -1015 1-50 '524 0470

*ON HYV VOVN
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TABLE ITT.~- TRANSFORMATION CONSTANTS FOR TABLE II

de
o) B X ] T R
(deg) | or v || 7
Cascade |1 | 45° {0.258] 22°957'[190°0" {10°4' |4.65{0.,197 |~=~==-
Isolated{0| O o 1-10°101{191%221{11%221{6.86| .0209/1.0912
TABLE IV.- VARIATION OF FLOW ANGLIS WI™H FELADE LCADING
cy a A M Ad AA On 86p |Py-Fg
Cascade
o} -10°4t 349561 |34%561]|34%561] © %29341117°3' {0
.5 -39541 [41%' |46%¢' |35°191'{10°47"|21%241|17%26"'| .329
1.0 202711 {47921 550271 35%231 1944|1293 {17950'| .734
1.17 49311 |4909311|580231 | 3505111220251 ) 9Ot 170581 ,891
(1deal)
1.3 6°10! {51910 {60°241{ 35°541{24%301 | 7% |18°1' |1.013
1.5 8045¢ |530451 [ 6302711 260121 | 270151 | 493 |18°19'|1.214
2.0 159251 |60°251 |70°111} 3609521 | 33919 [-22411{18°9591]|1.741
Isolated
0 -11%221 330521] 15945!
.5 -70111 2909411| 19°56!
1.0 -20591 2502911 24°8!
1.28 | -0%361 23%1 | 26°31!
(1deal) .
1.5 1°161 21°141} 28923
2.0 5°361! 169541 3204:? '

"o MMV VLYH
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TABLE V.- CASCADE CMF BY INVERSE METHOD

First approximation

Ayy dax,y dAyy Xy K Vz]_/v
P ax3 T T ) o 1 |(ey = 1.26)

0 x {% -0.717 |-0.241 |-0.411 | 1.673 }0.768 |0.344 1.598 Upper
1 -.621 | =-.114 .987 | 1.028 | .989 | .161 1.248 surface
2 -.37m | -.0o798]{ .701 | -.0011] .982 | .204 737 h

3 -.258 | -.0838| .324 | -.0440]| .902 | .599 ..803

4 -.195 | -.0873| .184 | -.0176] .810 | .936 .819

5 -.155 | -.0886| .12¢ | -.0322] .712 |1.194 .829

6 -.134 | -.0002| .0862| .0342]| .607 }1.366 .832 Lower
7 -.115 [ -,0858! .0694{ .0201| .494 |1.430 834 [0 e
8 -.0973| -.0816| .0666| .129 | .364 |1.359 . 832

9 -.0831| -.0718| .0933| .c547| .203 {1.228 .839

10 -.0550| -.0566| .186 .248 |-.0158} .979 .840

11 .0016] ~-,0312] .213 .176 |-.356 | .691 793

12 L0747 -,0125] .575 .502 [-.867 { .319 708 |J

13 336 .0021| 1.216 | -.418 |-.974 | .197 .614 |

14 .53¢ | -,0695| .265 | -.958 |{-.826 | .587 .809

15 .545 | ~,130 0172 | -.683 |-.708 | .879 .916

16 532 | -.183 | -.128 | -.533 |-.597 |1.073 1.018 -

17 468 | =.223 | -.210 | -.441 [-.507 {1,191 1.104 3 Pger
18 409 | -.261 | -.287 | -.410 |-.414 |1.232 1.184 surlace
19 306 | -.204 | -.366 | -.373 {-.327 |1.194 1.268 '

20 188 | =.322 | -.464 | -.272 {-.230 |1.055 1.386

21 .0358] -.343 | -.624 | -.225 |-.112 | .938 1.442
22 -.162 | =.357 | -.919 .0363| .o527| .748( 1.533
23 -e460 | =.341 |-1.245 624 | .317 | .563 1.551 |
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TABLE V.- CASCADE CMF BY INVERSE METHOD - Concluded

Second approximation

Aye | aaxp | arys | xp Vag/V

Xe e 52, —

? bxe w de dyp 1T %2 ey = 1.26) :
0 x {% -0.676 |-0.212 |-0.220 |1.269 |0.802 |0.334]| 1.588 :],Uppef
1 -.648 | -.120 .280 | .088 |[1.0 .124 1.508 surface
2 -.494 | -.0514 788 | .236 .957 | .205 7 [ :
3 -.210 | -.0418 .384 | .0401 | .896 | .575 .841
4 -.238 | -.0417 .226 | .0130 | .804 | .908 .842
5 -.162 | -.0409 .152 |-.0188 | .717 |1.166 .843 ;
6 -.129 | -.0425 .116 | .0258 | .615 |1.332 .842 Lowen
7 -.0801| -.0392 .0086|-.00847| .E11 |1.394 .844 Daurface
8 -.0502| -.0383 .0761| .0910 | .385 |[1.369 .832 ,
9 -.0120} -.0318 .124 | .00128| .231 |1.198 .845 ;

10 .0350] -.0233 .218 | .1200 | .0187| .954 .848 ;

11 .112 | -.0208 .178 |-.00737|-.319 | .e81 790 5

12 .163 { -.00877| .364 | .z80 |-.856 | .318 .691 E{ '

13 .385 .00050| 1.044 |-.459 [-.974 | .188 657

14 .554 | -,0732 .0837|-.948 |-.828 | .544 .862

15 532 | -.131 | -.135 |-.63¢ |-.716 | .796 .996

16 .503 | -.179 | -.240 |-.468 |-.611 | .973| 1.104 _

17 423 | -.214 | -.294 |[-.376 {-.524 |1.092| 1.184 Upper

18 .364 | -.247 | -.359 |-.325 |[-.431 |1.135{ 1.262 > qurFace

19 .250 | -.274 | -=.418 |-.306 |-.348 |1.120| 1.327

20 150 | -.206 | -.45¢ |-.241 |-.244 |1.079] 1.343

21 -.0010] -.316 | -.660 |-.218 |[-.126 | .908| 1.456

22 -.180 | -.320 | -.944 | .0611 | .0440| .730| 1.531

2 ~.488 | -.310 |-1.246 | .653 .308 | .555| 1.528

"CN YUV VDOVN
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TABLE VI.- ASSOCIATED CONSTANTS FOR CMF OF TABLE V

lo =1, p =459
o B K
A 1mati Dy @p Pr |ac,/da| T
pproximation (a) (a) (a) L/
1 1.001{42°30! |0.247{ 21°101 |189°%461| 7°5' | 4.69 |0.167
2 1.001]41°30'| .237|14%17'|189°401|5°17! J75 1 172

8Measured from "longest-line" chord of airfoil.,

TABLE VII.- CASCADE FLOW ANGLES FOR DERIVED AIRFOIL SECTIONS

Approximation | c; (a) A My Ag AN Oy 8p |8y - Pg
a

1 1.26| 89301|51° 60°4' | 369181 23%461] 6°32!| -7°539 0.98

2 1.26|10%! |51°361] 60°311| 37°41 | 23°271| -8%421| -7%56 .99

8¥Measured from “longest-line" chord of airfoil.
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figure/-Cascaae of
airroils and flat plares.
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figure 22— Cascade flar-plate fransformalion.
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Figure 3.— Source-vortex system
for cascade rlow.




—— Given airfoil in cascade
v Zero approximation , uppér surface
N Zero ogoroxmmarior , lower sorfoce
~-0--FIrst aQuroxs s or?
B Second ggoroxsraror?
s Third aoeroximorion
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& Interpolated pornts
21
' Upper surfac 3
—=0r "~ l 4-==:m&é;:\\- y=-Ay
- ==~ S+
=sigyl 1= |
P L “‘{ -—.—-.::ﬁ:él O . -_ = \\:F ./‘ )
r=asl _ T =3 PN
10 9 . { & J chord 4 \é’ 2 q{ 010
- -8 - - 2 x| .2 4 & 3 /

\—Lowe/* surfaeoe

Figure 4.— Direct CMF method for airfoil in cascade. B=45°, o=/
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gure o—Flow apgles for cascade of girfoils
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Fig. 6 NACA ARR No. L4K22b

G-
dzr
Y4e|
24
— /sotated
- 2 ~—--Cascade
\
L
\
J6}—
\\ 7—Uppe/' surface
N e =
~ N J _ - j— =~ .y
N \\ \>/_ < — = .
Q ' - L
S Bl S S 5
N T~~~ -] _ |
4 //// A il ~-.Z'
4 / Lower surface-V |
L
/
)
M _ ATIONAL ADYISORY
, COMMITTEE [FOR AERONADTICS
a L 4 Y B {7,
Chord '

Figure 6 — Velfocity distribultions o ¢=0.



NACA ARR No. L4K22b Fig.

34

2

24

0

|
. ¢
20 |
Ml\k I~ Upper surface
\ e e SN
12 _—] \\\1\\
A XL ,5// S
NN /%(&/
N ped
S P e
NP — 25 — N
g2 ] I e
/ // \_Vower surface
A
* NATIONAL ADVISORY
COMMITTEE [FOR AERONAUTICS
o .2 4 6 B L0
Chord

Figure 7— Velocity distributions, /solated arrfofl,

7



e e v s s e e e

BT CEUE SIS SV LN PSRRI W P I L EPUE AP U R S

Fig. 8 NACA ARR No. L4K22b

24

/ j =] N \\\ \
N // N \‘\\\\\\
g '
P - NN .
4 . NN 95
/I SSS 1174
=
20 20
vLotlz/e?/* surface
COFJMIT]EE FOR. AERDNAUTICS
Z 4 6 B L0
Chord
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Figure 8— Velocity distributions in cascade
by inverse merhod.
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alirfolls In cascade,
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